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Abstract
When two non-relativistic particles scatter in one dimension, they can become
entangled. This entanglement process is constrained by the symmetries of the
scattering system and the boundary conditions on the incoming state. Applying
these constraints, three different mechanisms of entanglement can be identified:
the superposition of reflected and transmitted modes, momentum correlations of
the reflected mode due to inversion of the relative momentum, and momentum
correlations in the transmitted and reflected modes due to dependence of the
scattering amplitude on the relative momentum. We consider three standard
potentials, the hard core, Dirac delta, and double Dirac delta, and show that the
relative importance of these mechanisms depends on the interaction and on the
properties of the incoming wavefunction. We find that even when the momenta
distributions of the incoming articles are sharply peaked, entanglement due
to the momentum correlations generated by reflection can be quite large for
particles with unequal mass.

PACS numbers: 03.67.Mn, 03.65.Nk, 03.65.Fd

1. Introduction

Before two particles scatter, they are in uncorrelated states. If we assume each particle can be
described by a pure state |φi〉 when the particles are far apart before the interaction, then the
initial total state of the system is the product of the two one-particle states |φin〉 = |φ1〉⊗ |φ2〉.
As the particles approach, the state evolves and interparticle separability is lost. Separability
does not return even if the interaction is elastic and after a long time the particles are far removed
beyond the interaction region. The boundary conditions of scattering are inherently time
asymmetric from the perspective of entanglement: practically, entangled particles cannot be
easily prepared, and even if they could be, they would not approach, interact, and then emerge
in a separable state. The amount of entanglement generated by scattering is also constrained
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by symmetry. For non-relativistic scattering, free particles are associated with projective
representations of the Galilean group extended by mass. Galilean invariant interactions imply
conservation principles, and these shape the mechanisms by which the entanglement occurs.

For simplicity, we consider the generation of entanglement in the non-relativistic scattering
of two structureless, distinguishable particles in one dimension. Within this limited context,
we show that the constraints of symmetry and time-asymmetric boundary conditions on the
incoming state imply that scattering entanglement proceeds by the combination of three
mechanisms. The simplest is the entanglement between transmission and reflection. This
mechanism of entanglement is also the coarsest, because as long as the transmitted and
reflected modes are orthogonal, each particle can effectively be thought of as a two-level
system, with each level corresponding to a different side of the interaction region. The other
two mechanisms create entanglement by distorting the wavefunctions of the modes in a non-
separable fashion. If particles have different masses, the wavefunction of the reflected mode
is distorted by the transformation that reverses the direction of the relative momentum. In
other words, because of the conservation of total momentum, momentum correlations between
the particles are created by reflection since their momentum distributions have a finite width.
Finally, the scattering amplitudes typically vary with the relative momentum and this causes
momentum correlations. The wavefunction of both the transmitted and reflected mode in the
outgoing state can be inseparably distorted by this effect. The contribution of this mechanism
to the entanglement of the outgoing state diminishes as each particle’s wavefunction becomes
sharply peaked about a central value, but we will show that the entanglement due to the
reflection mechanism does not.

The study of how entanglement is generated in scattering has interest for a variety of
reasons. Some leading possibilities for practical implementations of quantum information
processes, such as ultracold atoms and some solid state devices, are physical systems where
scattering is central to the dynamics. Also, quantum information theory with continuous
variables and mixed continuous-discrete variables has many open questions, and scattering
systems provide a rich structure for exploration of such systems. Finally, scattering is a
fundamental method of interaction for systems at all quantum scales, and one could hope that
entanglement might provide new perspective on this basic interaction process.

Entanglement generation in the non-relativistic scattering of structureless, distinguishable
particles has been considered previously [1–9]. Most of these previous treatments consider
interactions of a single species [2–7, 9], and have focused on particular special cases. This
paper provides a unified treatment of all these results and provides a framework for further
exploration and generalization. The general methods applied here were developed in [10], in
which the effect of linear transformations of observables on the entanglement of a wavefunction
is described. In [10], this technique is used to prove that entanglement with respect to certain
sets of observables (such as internal–external entanglement, but not interparticle entanglement)
is conserved in scattering, and this is applied to the mechanism of entanglement due to
reflection.

In section 2, this paper will show that by combining the results of [10] with the constraints
of symmetry and the time-asymmetric boundary conditions of scattering, the three mechanisms
for entanglement can be identified. In section 3, the interplay of these mechanisms is
explored for three finite-range potentials: hard core, Dirac delta and double Dirac delta.
Two important features emerge that contradict some assumptions found in the literature. First,
we will show that when reflection dominates the scattering interaction, even for very narrow
momentum distributions, the mechanism of reflection distortion can dramatically increase the
entanglement. All that matters is the relative masses and momentum variances of the particles
in the incoming state, not the overall scale, and this effect dominates at low energy. Second, we
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find that although scattering resonances cause rapid variations in the scattering amplitudes and
therefore the third mechanism is relevant, they do not always increase the total entanglement
within the transmitted and reflected modes.

2. Entanglement, symmetry and scattering boundary conditions

For two structureless, distinguishable, non-relativistic particles in one dimension, the
momentum operators of each particle {P̂ 1, P̂ 2} form a complete set of commuting observables
(CSCO). A tensor product structure corresponding to this CSCO is H1 ⊗ H2, where Hi is
the single, free-particle Hilbert space. A pure state of the system is described by the bi-
momentum wavefunction φ(p1, p2). For simplicity, we shall restrict considerations so that
φ(p1, p2) ∈ S(R2), the Schwartz space on the bi-momentum plane (p1, p2). This means that
we consider wavefunctions that are smooth, infinitely differentiable and rapidly decreasing
at infinity. With this mild and physically reasonable restriction, we can employ Reimann
integrals and be assured of their finiteness.

The interparticle entanglement of a general pure state |φ〉 ∈ H1 ⊗ H2 can be calculated
by the purity of the one-particle reduced density matrix

p12(φ) = Tr1 ρ2
1 = Tr2 ρ2

2 , (1)

where ρi is the one-particle reduced density matrix

ρ1 = Tr2(〈φ||φ〉). (2)

For the continuous-variable wavefunction φ(p1, p2), the purity of the reduced density matrix
becomes

p12(φ) =
∫

dp1 dp2 dp′
1 dp′

2φ(p1, p2)φ
∗(p′

1, p2)φ(p′
1, p

′
2)φ

∗(p1, p
′
2). (3)

The interparticle purity p12 is an entanglement monotone (more purity always mean less
entanglement) and takes values in the interval (0, 1] as long as the wavefunction φ(p1, p2)

is normalized. For continuous-variable entanglement, the purity is useful because, unlike
the entropy of entanglement, one does not need to diagonalize the reduced density matrix
to calculate p12 numerically. Additionally, the simple form (3) allows for analytic results in
certain cases (see below).

Without loss of generality, all calculations can be performed in the center-of-mass
(COM) reference frame where the expectation value 〈P̂ 〉 of the total momentum operator
P̂ = P̂ 1 ⊗ Î2 + Î1 ⊗ P̂ 2 in the state φin(p1, p2) is zero. Galilean transformations, including
global boosts and translations, are represented by unitary transformations that are local with
respect to the interparticle tensor product structure H1 ⊗ H2 and therefore do not affect the
value of the interparticle entanglement [11]. In other words, the operator that performs the
boost to the COM frame factors as U(−〈P̂ 〉) = U1(−〈P̂ 〉) ⊗ U2(−〈P̂ 〉). The value 〈P̂ 〉 is
invariant under the dynamics as long as the interaction is Galilean invariant.

One boundary condition of a scattering experiment is that the in-state φin (formally the state
in the limit t → −∞) is separable with respect to the interparticle tensor product structure.
Since φin(p1, p2) = φin,1(p1)φin,2(p2), one calculates that p12(φin) = 1 for every scattering
system. The dynamics will generally not preserve this separability. For example, when two
particles with spin scatter non-relativistically, one can show that even in the simplified case of
central interactions and narrow momentum distributions, the set of S-matrices acting on the
spin degrees of freedom that lead to separable out-states depends on the specific in-state and
it is a set of lower dimension on the manifold of all possible symmetry-preserving and unitary
S-matrices [12].
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Another boundary condition for scattering is that the particle wavefunctions represent
states that are ‘incoming’ before the scattering. If the interaction potential has finite range,
‘incoming’ suggests that the single-particle position expectation values in the in-state are
on opposite sides of the potential region. Assuming the COM reference frame, the single-
particle momentum expectation values are equal in magnitude and directed toward the potential
region. Further, before the interaction the position wavefunction should have no (or essentially
no) support in the potential region and the momentum wavefunctions have support only (or
essentially only) on the positive semi-axis for one particle and on the negative semi-axis for
the other. For our calculations, we consider the product of two Gaussian wave packets

φG
in (p1, p2) = N1N2eip1a1 e

− (p1−k)2

4σ2
1 eip2a2 e

− (p2+k)2

4σ2
2 , (4)

where Ni = (
2πσ 2

i

)−1/4
, k is the magnitude of the momentum of each particle in the COM

frame, ai are the central positions, and σi are the momentum uncertainties for each particle’s
Gaussian. As long as a1 = −a2 is large and when k/σi 	 1, this wavefunction satisfies at
least these heuristic notions of incoming.

A more refined notion of incoming boundary conditions is the Hardy space hypothesis of
Bohm and collaborators [13]. In that formulation, further restrictions are placed on the space of
allowable in-states, which are defined by the preparation apparatus, such as an accelerator. An
alternate CSCO for two particle elastic scattering is {P̂ , Ŵ , �̂} with generalized eigenvalues of
the total momentum p ∈ R, the internal energy w ∈ R

+, and the relative momentum direction
χ = ±, respectively. Then the incoming wavefunction φin(p,w, χ) is a Hardy function from
below in internal energy, i.e. it is the boundary value on the real semi-axis of a function that is
analytic in the lower-half complex plane when w is extended to complex values. Additionally,
the wavefunctions are Schwartz, giving them well-behaved smoothness and convergence
properties in the internal energy and the total momentum. Conjugate requirements apply to
the wavefunctions that represent the out-observables, which are defined by the detectors, but
these do not enter the present analysis. It is an open question as to whether the requirements
of the Hardy space hypothesis are consistent with the separability constraint on the in-state
described above. However, since the Hardy–Schwartz spaces are dense in the Hilbert space,
there will always be elements as close to separable as would be physically indistinguishable.

We will not consider the intricacies of the time dependence of the scattering entanglement.
Instead, since the in-state particles are always unentangled, any entanglement in the final out-
state will be generated in the scattering event. The out-state (formally the state in the limit
t → +∞) is found by

φout = Ŝφin, (5)

where Ŝ is the scattering operator. The exact form of the S-operator can be calculated for
finite-range potentials by transforming to the COM-relative momentum coordinate system

p = p1 + p2 q = µ2p1 − µ1p2, (6)

where µi = mi/(m1 + m2) and solving the time independent Schrödinger equation in the
relative momentum variable q [14]. The S-matrix in the (p, q)-basis of the CSCO {P̂ , Q̂} is

〈p, q|Ŝ|p′, q ′〉 = δ(p′ − p)(t (q)δ(q − q ′) + r(q)δ(q + q ′)). (7)

The functions t (q) and r(q) are the transmission and reflection amplitudes, and unitarity
implies |t (q)|2 + |r(q)|2 = 1. We also note in passing that the S-operator is a local operator
with respect to the tensor product structure dictated by the CSCO {P̂ , Q̂}, and so entanglement
with respect to that tensor product structure is dynamically invariant [15]. In other words, one
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can define a transformed wavefunction φ̃(p, q) and calculate

ppq(φ) =
∫

dp dpq dp′dq ′φ̃(p, q)φ̃∗(p′, q)φ̃(p′, q ′)φ̃∗(p, q ′) (8)

and one would find that ppq(φin) = ppq(φout).
Using (7) and transforming back to the CSCO {P̂ 1, P̂ 2}, the out-state can be expressed as

the sum of a transmitted and a reflected mode

φout(p1, p2) = φtra(p1, p2) + φref(p1, p2), (9)

where

φtra(p1, p2) = t (µ2p1 − µ1p2)φin(p1, p2) (10)

and

φref(p1, p2) = r(µ2p1 − µ1p2)φin(p1, p2). (11)

The wavefunction φin(p1, p2) is the in-state wavefunction φin(p1, p2) transformed by the
reflection of the internal momentum q → −q. One can show that

φin(p1, p2) = φin(p1, p2), (12)

where (p1, p2) are

p1 = (µ1 − µ2)p1 + 2µ1p2 p2 = 2µ2p1 + (µ2 − µ1)p2. (13)

The wavefunctions φtra(p1, p2) and φref(p1, p2) are orthogonal modes. The domain of
support for φin(p1, p2) (and therewith φtra(p1, p2)) can be chosen without loss of generality
as the region where p1 > 0 and p2 < 0. The domain of support of φin(p1, p2) (and therewith
φref(p1, p2)) is then the region where (µ1 −µ2)p1 +2µ1p2 > 0 and 2µ2p1 +(µ2 −µ1)p2 < 0.
Remembering µ2 = 1−µ1 and 1 > µ1 > 0, one can show these domains have no intersection.
Since the domains of support of the transmitted and reflected states are disjoint, the purity of
the out-state is the sum of the purities of those two modes

p12(φout) = p12(φtra) + p12(φref). (14)

From this observation, two distinct types of entangling mechanisms can be identified. One
source of entanglement is the superposition of the transmitted and reflected modes. As long as
there is no perfect reflection or perfect transmission, we will find p12(φout) < 1. The other is the
entanglement within the transmitted and reflected modes themselves, and these mechanisms
can be further refined into entanglement due to reflection distortion and entanglement due to
the variation of t (q) and r(q) with q.

To understand the effect of reflection, note that the transformation of momentum variables
(13) typically distorts the shape of the wavefunction and disrupts separability (see figure 1).
Because a given value of relative momentum q may overlap with a section in the (p1, p2)-
plane, momentum correlations ensue when the transformation q → −q occurs. However,
there are some special cases when this mechanism does not create entanglement. For the
case of equal masses µ1 = µ2 = 1/2, we find (p1, p2) → (p2, p1) and so the function
φin(p1, p2) → φin(p2, p1) is still separable for any wavefunction φin(p2, p1) that satisfies the
incoming boundary conditions.

If we restrict ourselves to Gaussian in-state wavefunctions φG
in (p1, p2), then we find that

the reflected state φG
in (p1, p2) = φG

in (p1, p2) will in addition be separable if

m1
/
σ 2

1 = m2
/
σ 2

2 , (15)

a relationship first noted by Schulman [1].
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Figure 1. These contour plots depict the bi-momentum probability densities |φG
in (p1, p2)|2

(upper, left subfigure) and |φG
in (p1, p2)|2 (the rest) for various values of the mass fraction

µ1 = m1/(m1 + m2) plotted on the (p1, p2) plane. For each graph, the central momentum is
k = 0.1 and the momentum variances are σ1 = k/10 and σ2 = k/5. As the contours move
outwards, each represents a reduction of probability density by a factor of 10. Unless the major
and minor axes of the ellipses align with the (p1, p2)-axes, the wavefunction has interparticle
entanglement.

More generally, using the results for entanglement under linear transformations of
observables found in [10], an analytic expression for the purity p12

(
φG

in (p1, p2)
)

can be
found

p12
(
φG

in

) = σ1σ2√(
(µ1 − µ2)2σ 2

1 + 4µ2
1σ

2
2

)(
4µ2

2σ
2
1 + (µ2 − µ1)2σ 2

2

) . (16)

Using µ2 = 1 − µ1 and c = σ2/σ1, this can be re-expressed as

p12
(
φG

in

) = c√(
(2µ1 − 1)2 + 4µ2

1c
2
)
(4(1 − µ1)2 + (1 − 2µ1)2c2)

, (17)

and this form highlights the fact that it is the ratio of the momenta variances, and not their
scale, that is important. This function takes a maximum value of 1 when either m1 = m2 or
m1

/
σ 2

1 = m2
/
σ 2

2 (see figure 2). For these particular combinations of constants, the terms in
the exponential that are proportional to the product p1 × p2 all cancel out and φG

in (p1, p2) is
again a product of Gaussians in p1 and p2. When m1 = m2 the variances (σ1, σ2) switch roles
and φG

in (p1, p2) = φG
in (p2, p1), whereas when m1

/
σ 2

1 = m2
/
σ 2

2 , we find the wavefunction is
unchanged by reflection φG

in (p1, p2) = φG
in (p1, p2).

The third mechanism for entanglement is the distortion of the wavefunctions of the two
modes due to the variation of t (q) and r(q) with the relative momentum q. Consider the
transmitted mode φtra(p1, p2) = t (q)φin(p1, p2). Since q = µ2p1 − µ1p2, the transmission
amplitude t (q) will generally not be a separable function of p1 and p2. Each value of q
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Figure 2. This contour plot depicts the values of the function p12(φ
G
in ) (17). The thick contours

trace the two lines of maximum purity, corresponding to the values of µ1 and c = σ2/σ1 where
the Gaussian bi-momentum wavefunction is separable even after the reflection q → −q. Each
subsequent contour represents a purity reduction of 0.1.

corresponds to a section in the (p1, p2) plane, and these different sections will be given
different weights when the in-state is convoluted with t (q) to get the wavefunction for the
transmitted mode. Therefore, φtra(p1, p2) will not be separable with respect to the particle
momentum variables, and momentum correlations will ensue within the transmitted mode. A
similar effect will take place in the reflected mode φref(p1, p2) = r(q)φin(p1, p2) because of
the inseparability of r(q), except then the function φin(p1, p2) may also be inseparable due to
entanglement by the second mechanism described above.

3. Results for specific potentials

The following subsections make explicit calculations of entanglement for specific potentials.
In all cases, the in-state is assumed to have the form (4). This means that the in-state can be
fully described by five parameters: m1,m2, k, σ1 and σ2. Instead of m1 and m2, the following
results will be expressed in terms of the mass fraction of the first particle µ1 = m1/M and the
total mass variable M = m1 + m2.

To understand how the three different mechanisms described in the previous section
contribute for these potentials in different parameter regions, we will consider the following
two approximations. The first approximation is the coarse approximation, which we will
denote as approximation (C). In (C), only the entanglement due to the superposition of
transmission and reflection contributes. The system is effectively two two-level systems,
and the purity takes its minimal values (corresponding to maximal entanglement) when the
uncertainty between transmission and reflection is maximal. If T and R are the transmission
and reflection probabilities, then

pC
12(φout) = T 2 + R2. (18)

Physically, the coarse approximation (C) will be a good approximation if two facts are true.
First, the scattering amplitudes are constants over the support of the in-state wavefunction
and will be evaluated at the central momentum, i.e. t (q) → t (k) and r(q) → r(k). The
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transmission probability is T = |t (k)|2 and the reflection probability is R = |r(k)|2. Then the
third mechanism does not apply since the scattering amplitudes are constants (and therefore
do not disrupt separability). Second, in the coarse approximation (C) we neglect entanglement
due to reflection distortion, which is reasonable if the particles have equal masses or the if the
in-state is approximately Gaussian with masses and variances satisfying (15).

In the second approximation, called (C+R), we continue to assume that the scattering
amplitudes are essentially constants, but we allow for entanglement due to reflection distortion.
For the transmitted mode, one calculates

p12(φtra) = |t (k)|4 (19)

and for the reflected mode one calculates

p12(φref) = |r(k)|4p12(φin). (20)

For Gaussian in-states like (4), we find

p12(φout) = |t (k)|4 + |r(k)|4p12
(
φG

in

)
, (21)

where p12
(
φG

in

)
is the explicit function of σ1, σ2, µ1 and µ2 in (16) and does not depend

on the exact nature of the potential (although t (k) and r(k) do). Because p12(φin) < 1,
approximation (C+R) is always less than the coarsest approximation (C); reflection distortion
can only increase the entanglement in this approximation.

For the exact results for p12(φout), the four-dimensional integral (3) was calculated
numerically.

3.1. Hard core potential

This is the simplest case of potential scattering. In the relative variable x = x1 − x2, the
potential has the form

V (x) =
{

0 x > 0
∞ x � 0

. (22)

Solving the Schrödinger equation in the relative momentum gives the trivial answer r(q) = −1
and t (q) = 0 for all q. For this potential, with equal masses, the coarsest approximation (C)
would suggest that a long time after hard core scattering there is no entanglement, and this
result is reported in [4]. However, as noted in [3, 8] and confirmed by these calculations,
reflection can cause distortion. In fact, for this case the approximation (C+R) is exact

p12(φout) = p12(φref) = p12(φin). (23)

Figures 1 and 2 can therefore also be considered as depicting the entangling effects of hard
core scattering. Note that this entanglement is not dependent on any absolute scale such as
the energy, momentum or mass, but depends on the ratios of masses and variances. This kind
of entanglement due to reflection (which is a factor in other potential scattering results below)
does not disappear in the narrow wave packet approximation, even though the scattering
amplitudes slowly vary or do not vary at all.

This kind of entanglement due to momentum distribution correlations within a single
mode can be expected to be difficult to measure compared to the entanglement between
transmission and reflection. For direct measurement, one would need a device to measure the
momentum distribution of the scattered particles that has at least a resolution smaller than the
in-state momentum variances. One possible scheme, developed for the study of atom-photon
wavefunction entanglement in spontaneous emission [16], involves comparing wavefunction
variances found in both single-particle and two-particle coincidence measurements of position.
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Figure 3. The data points on the main plot depict the function p12(φ

G
out) and the approximation (C)

and (C+R) for the case m2 = 4m1 for the Dirac delta potential. On the horizontal axis, the central
momentum of the wavefunction k is measured in units of α(m1 +m2)/h̄

2. The black line represents
both the coarse approximation (C) (which is independent of σ1/σ2) and the approximation (C+R)
in the case σ1/σ2 = 1/2 (which satisfies the Schulman condition (15)). The dashed line is (C+R)
for σ1/σ2 = 1 and the dot-dashed line is (C+R) for σ1/σ2 = 2. The diamonds, circles and squares
are the exact result computed numerically for (σ1 = k/10, σ2 = k/5), (σ1 = k/5, σ2 = k/5) and
(σ1 = k/5, σ2 = k/10), respectively.

The Fourier transformation between the position and momentum wavefunctions is local with
respect to the interparticle tensor product structure, so measuring the position entanglement is
equivalent to measuring the momentum entanglement. The practicality of this scheme would
depend strongly on the specific nature of the system under investigation, and warrants further
study.

3.2. Dirac delta potential

This potential has the form

V (x) = αδ(x). (24)

The reflection amplitude is

r(q) = i
kh̄2

αµ
− i

= i
kh̄2

αMµ1(1−µ1)
− i

(25)

and the transmission amplitude is t (q) = 1 + r(q), where µ is the reduced mass µ = µ1µ2M .
This potential has no resonances, and since the single bound state that occurs when α < 0
does not participate in the elastic scattering, we can replace α → |α| without affecting any
scattering entanglement results. This potential is considered in [2, 6, 9] for the equal mass
case.

To highlight the distinction between the exact result for the purity, approximation (C) and
approximation (C+R), consider figure 3 which depicts particles’ scattering via the Dirac delta
interaction when m2 = 4m1. The figure reveals that when the particles have different masses,
the relative momentum variance σ1/σ2 dramatically effects the entanglement. Unless the
condition (15) is fulfilled, the entanglement is enhanced by the reflection mechanism for low
k because reflection dominates the scattering (see figure 3 inset showing reflection probability
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Figure 4. The data points on the main plot depict the function p12(φ
G
out) and approximations (C)

and (C+R) for the case m2 = 4m1 for the double Dirac delta potential. On the horizontal axis, the
central momentum of the wavefunction k is measured in units of α(m1 + m2)/h̄

2. The black line
is approximation (C) and the dashed line is approximation (C+R) for σ1/σ2 = 2. The circles are
the exact result computed numerically for σ1 = k/5.

|r(k)|2). Generally, the maximum entanglement (minimum purity) occurs at a value of k
where the transmission and reflection probabilities are equal, but the location of the extreme
shifts to lower k due to this reflection distortion, which for a given mass ratio, depends only
on σ1/σ2.

Also note that in figure 3, the approximation (C+R) and the exact result are very close,
even for relatively wide Gaussian wavefunctions σi/k = 1/5. The variation of t (q) and r(q)

does not lead to much wavefunction distortion. In the next example, because of resonances
the scattering amplitudes vary with k at a faster rate and this will no longer always be true.

3.3. Double Dirac delta potential

This potential has the form

V (x) = α (δ(x + a) + δ(x − a)) . (26)

The transmission amplitude is

t (q) = q2/b2

(e4iaq − 1) + 2iq/b + q2/b2
(27)

and r(q) = t (q) − 1, where b = (m1 + m2)α/h̄2. This potential has resonant transmission
|t (q)|2 = 1 for particular values of the relative momentum q. For plots below, we choose
a = 10b−1 and measure q in units of b. This case is considered in [5] for equal mass
particles, and our methods clarify those results about the relative widths of resonances and the
wavefunctions.

In figure 4, we contrast the two approximations and the numerically-evaluated exact
results for m2 = 4m1, σ1 = k/5 and σ2 = k/10. Figure 5 looks at this region around the
first, narrowest resonance in more detail for a variety of absolute scales for the variances, but
the same fixed ratio of variances σ1/σ2 = 2. At resonance, the purity of both approximations
becomes unity because only the transmission mode contributes. We see that in the exact
results, the rapid variations of the out-state entanglement as found in the approximations
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Figure 5. This depicts an enlargement of figure 4 around the first transmission resonance. The
circles, squares and diamonds are the exact result computed numerically for σ1/σ2 = 2 with
different variance scales σ1 = k/5, σ1 = k/10 and σ1 = k/50, respectively.

are somewhat smoothed over. The wider the momentum variance in the in-state, the more
pronounced this effect is.

In agreement with [5], we also see a slight enhancement of entanglement (reduction of
purity) for wavefunctions wider than the narrow resonance. As the variance scale gets smaller,
this effect disappears, and the exact results become closer and closer to the approximation
(C+R). Note that even as the wavefunctions become narrower, the coarsest approximation (C)
consistently underestimates the entanglement; entanglement due to reflection is independent
of the scale of the variances and only depends on the masses and the ratio of the variances.
Note that because of convolution with a fast-varying scattering amplitude, some narrow
wavefunctions will become more entangled than wider wavefunctions, so the general statement
‘resonances increase entanglement’ should be evaluated with caution.

4. Conclusion

In summary, by employing symmetry methods and applying the time-asymmetric boundary
conditions, the problem of scattering entanglement in one dimension can be analyzed by
the relative importance of three different mechanisms: two-mode superposition, reflection
distortion and scattering amplitude distortion.

The overall momentum dependence of the entanglement is determined on a coarse scale
by the two-mode effect, but if one could measure the momentum distributions of the two
particles in the out-state, then further entanglement would be detected. The entanglement due
to reflection is intriguing because it depends on the ratio of the particle masses and the ratio
of the momentum variances. The effect is most pronounced when the more massive particle
has a more certain momentum. No matter how sharp the initial momentum distributions
are, quantum correlations ensue for Gaussian states unless the Schulman condition (15) is
satisfied or the masses are equal. As the distribution gets narrower, however, it would also
become more difficult to measure this entanglement. Scattering amplitudes that vary rapidly
with relative momentum on the scale of the variances also distort the wavefunction in an
inseparable manner, and in contrast, this kind of entanglement becomes less prominent for
narrow momentum distributions.
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More complicated scattering problems must be considered if these methods will be useful
for practical applications to quantum information processes with cold atoms and solid state
devices. Generally, these will require multi-dimensional results for identical particles with
spin (although some one-dimensional scattering may have applications; see [17] for examples).
In addition to possible new effects, these three mechanisms should still be applicable to these
situations. The application of symmetry methods and the restriction of time-asymmetric
boundary conditions remain valid, and they will be the starting point for future generalization
of this work.
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